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Transport Properties of Droplet Clusters in 
Gravity-Free Fields 

Principal Investigator: Howard Brenner 

Abstract 

Clusters of liquid droplets are suspended in an  atmosphere of saturated vapor and are subjected 
to an external force field. This system can be modeled as a continuum whose macroscopic properties 
may be determined by applying the generalized theory of Taylor dispersion. 

Background 

In many recent studiest-4 the phenomenological theory of nucleation5 has been derived starting 
from the more fundamental description of critical phenomena.6 In most applications, however, a 
coarser grained description of the system is required, where the two-phase medium is modeled as a 
continuum whose macroscopic properties depend on the fine-grained geometric characteristics of the 
system and on the physical properties of the two phases. In the research program that we have 
undertaken this goal is pursued for the particular case of liquid droplets immersed in an atmosphere 
composed of its saturated vapor. This study requires a fundamental understanding of the basic 
transport processes involved -- specifically, knowledge of the kinetics of phase transformation 
(involving, for example, rates of droplet coalescence and breakup) and the coupling between such 
‘internal’ transport processes, typically molecular diffusion and convection under the influence of 
external fields. We expect that the dominance of capillary forces in our two-phase , gravity-free 
systems will lead to novel physicochemical two-phase interfacial phenomena, not encountered in 
terrestrial, gravity-dominated systems. 

Our approach to the problem uses the following scheme: 

a) Formulate the problem a t  a microscale level such that the droplets are 
perceived as discrete entities5 and where interfacial effects can be taken 
into consideration using macroscopic relations.7-13 

b) Apply the generalized theory of Taylor dispersion 14-16 to the problem to 
obtain a set of model equations (presumably of the convective-diffusive 
type), describing the system as a continuum at the macroscale. 

Results 

Our analysis applies to spherical liquid droplets (or vapor bubbles) of radius rat  position R = (s, 
y, z) in a vapor (or liquid) continuum, with 00 the surface tension. I t  begins with the observation that 
at thermodynamic equilibrium (and in the absence of a gravity field causing sedimentation of the 
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denser phase) the probability density P;(r) for finding droplets of size r a t  any point R of space is 
independent of R, and is given by5 

with kT the Boltzmann factor and C the normalization constant 

arising from the unit normalization condition 

impose on the probability. 

One of our main accomplishments to date is the derivation17 of the kinetic equation 

6P - +v. J =  - ( r j ? = O  1 2  
2 6t r 

governing the nonequilibriumtransport of the probability density 

P = P(r,R,t), 

m 
2 

, I = , $ R  / r = o P r  dr  = l *  
for finding droplets of size r a t  position R. In the preceding, 

is the R-space gradient operator, and 

d3R - d x d y d z  

(4) 

(7) 

(8) 

e is a physical-space volume element. Here, the convective-diffusive constitutive equation for the 
fluxes appearing in the conservation equation (4) are, respectively, I 

I (i) size-space flux densitv: 

6P 
j = UP - d(r ) - ;  (9) 

6r , (ii) phvsical-space flux densitv vector: 

(10) 

Phenomenological coefficients appearing in the above are with po the viscosity of the continuous 
phase, 

J = U r ) P  - D(r)VP. 

and 
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with 
(lob) 

(10c) 

the Stokes law mobility of the droplet. In addition, F is the external force, if any, exerted on the 
droplet. 

The zeroth-order moment 
r m  

(11) 

of the probability density P satisfying the kinetic equation (4)-(10) properly reduces in the steady 
state, t + m,.to the original equilibrium relation (1). On the other hand, if the system is not a t  
equilibrium [e.g. all the droplets are initially of identical size, rather than conforming to the 
equilibrium size distribution (l)], Eqs. (4)-(10) permit calculation of the detailed relaxation of the 
droplet size distribution of the system to its equilibrium state (1). Simultaneously, it also allows 
calculation of the relaxation of spatial gradients existing within the system. In particular, i t  reveals 
how these two transport processes are coupled. 

Equations (41410) are identical in structure to the generic equations of generalized Taylor 
dispersion theory,14-15 thus permitting determination of the macroscopic properties of the two-phase 
system. For example, we find that the sized-averaged molecular diffusivity, 

of the system is 

r m  
(12) 

Moreover, if a force f per unit volume is applied to the discrete phase (i.e. f =  F/(4nr3/3), the total 
diffusivity coefficient n* adopts the form - - - 

D *  = D, + D, , 
with & denoting the Taylor-like convective contribution 

(14) 

(15) 

to the diffusion coefficient. I t  is generally only these meantypes of phenomenological quantities that 
are directly accessible to experiments, rather than comparable size-specific phenomenological 
coefficients, such as D and d appearing in Eqs. (9) and (10). Closely related to this is the fact that Eqs. 
(13) and (15) involve only macroscopic physical parameters, namely interfacial tension 00 and 
continuous-phase viscosity po. 

Extensions of the Research 

Fundamental  solution of the  kinetic equation. We are currently attempting to provide the 
fundamental Green's function solution of the unsteady kinetic equation. by the method of 
superposition this will reduce the solution of the kinetic equations for an arbitrary initial size 
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distribution to a quadrature. The existence of such formal solutions will prove useful in future 
applications by permitting calculation of the relaxation of the system to its equilibrium state. 

Finite container size. As in Eq. (31, droplet radii in the range r = 0 to QD are employed in the 
development Obviously, finite container dimensions preclude from consideration relatively large 
droplet sizes. Thus, in applying our equations in practice, attention needs to be paid to rationally 
deriving an upper cutoff radius rg in relation to the container size. 

Lower limit cutoff radius. .If the droplets are too small, our kinetic analysis may become 
inapplicable, owing to the breakdown of the continuum hypothesis. Whether or not such effects are 
significant remains to be examined. 

N particle approach. Hydrodynamic interaction between Brownian droplets. Our ideal 
kinetic equations effectively represent a one-body particle distribution P. In order to enhance the 
range of applicability of our analysis we need to create a more general N-body kinetic scheme, in 
which the (average) number of droplets is not conserved in a nonequilibrium system owing to droplet 
coalescence and breakup processes. One eventual prediction of our theory should be the number  of 
droplets  (irrespective of size r )  per unit volume a t  a point R of the continuum, which may prove to be 
an experimentally accessible quantity. This requires a basic extension of the theory. Among other 
things, it entails problems of clustering in relation to hydrodynamic interactions among the droplets. 

' 

Surfactants. The presence of surface active agents in experimental systems is largely 
unavoidable. Conversely, the addition of surfactants to two-phase systems often leads to interesting 
new capillary phenomena, e.g. ultralow tension systems. We intend to investigate the modifications 
in our theory engendered by the presence of such agents. At a minimum, their presence in the form of 
a n  absorbed interfacial phase lowers the surface tension in accordance with Cibb's formula 

o = o0 - kTTs, (16) 

where r, is the surface-excess surfactant concentration a t  the interface. For a fixed mass of 
surfactant present in the system (assumed to be entirely absorbed a t  the interface for all times), this 
has the effect of making 6 in Eq. (16) a function of r .  As our kinetic theory has involved the 
assumption that o z  d r ) ,  necessary modifications of the theory arising from the presence of 
surfactants will need to be addressed in order to gauge their experimental importance. 

Supersaturated systems. Our kinetic approach may provide alternative insights into the 
standard approaches to the kinetics of phase transitions.18 Such possibilities will be investigated. 
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